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ABSTRACT INTRODUCTION 

Inbreeding coefficients for 9.3 million 
registered Holsteins were computed by 
constructing a small relationship matrix 
for each animal and its arxestors instead 
of one large matrix for the whole popula- 
tion. Recent cows averaged 2.0% in- 
breeding if each pedigree path was ex- 
tended to the most recent ancestor born 
before 1960. Inbreeding was underesti- 
mated because some pedigrees included 
unknown ancestors more recent than the 
defined base year. Alternative estimates 
of inbreeding can be derived by assign- 
ing mean relationship and inbreeding of 
known ancestors to unknown ancestors 
of the same period. Animals of different 
breeds are less related than animals of 
the same breed. Relationships and in- 
breeding within and across populations 
can be measured back to the common 
base population from which the breeds 
arose by treating earliest known ances- 
tors within each breed as related and 
inbred. Increased heterozygosity and 
heterosis of crossbred animals are then 
predicted from their lower inbreeding 
coefficients. Relationship matrices that 
include related and inbred unknown- 
parent groups treated as random or fixed 
effects can be constructed and inverted 
quickly. 
(Key words: inbreeding, genetic evalua- 
tion, crossbreeding, heterosis) 

Abbreviation key: CPU = central processing 
unit, %a = percentage of inbreeding measured 
to across-breed base, %,,. = percentage of in- 
breeding measured to within-breed base. 

Received May 8, 1992. 
Accepted July 14, 1992. 

Relationship, inbreeding, and heterosis 
coefficients measure similarity or dissimilarity 
of genes (5, 6, 16). Genetic evaluations now 
account for covariances among animals with 
similar genes by including inverses of relation- 
ship matrices in mixed model equations (7). 
Effects of inbreeding and heterosis usually 
have not been included because of the 
difficulty of computing inbreeding coefficients 
and the extra parameters required to model 
specific heterosis among several breeds. 
Similarity of genes eventually might be quanti- 
fied by direct analysis of DNA. For now, 
genetic similarity is measured by probabilities 
that genes are identical by descent, and these 
probabilities are computed from pedigrees. 

Pedigrees of registered animals may be 
recorded fairly accurately over many genera- 
tions, but genetic evaluations also include 
grade animals with pedigrees that may trace 
back only one or two generations. Ancestry 
information is difficult to obtain even for some 
registered animals because 1) one or more 
paths of their pedigrees may trace to or 
through foreign herdbooks and 2) early ances- 
try information may not be recorded electroni- 
cally. Recent research (8, 10) often has ignored 
these problems and assumed that animals are 
not inbred and are unrelated if ancestry is 
unavailable. 

Crossbred animals have been excluded from 
evaluations, and data sets for different breeds 
have been kept separate because of difficulty 
of accounting properly for heterosis. When 
data are combined, effects of either general 
heterosis among all breeds or specific heterosis 
for each pair of breeds usually are included, 
but breed crosses usually are assigned no more 
genetic variance than purebreds (3). Crossbred 
progeny must be more heterozygous than their 
purebred parents, and animals of the same 
breed must be related more to each other than 
to animals of different breeds; however, 
models have not included these two basic as- 
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sumptions. Base populations have differed 
widely in studies of inbreeding. Some 
researchers have traced pedigrees back only a 
few years (lo), but others have extended them 
for nearly 100 yr (18). Breeds of today 
diverged from some common base population 
hundreds, or even thousands, of years ago, but 
researchers have not tried to extrapolate be- 
yond available pedigree files to this earlier 
base population when they analyze mixed 
breed data. Measures of relationship may be 
inaccurate if individual ancestry is not 
recorded back to a common base population. 
Inbreeding accumulates slowly in most 
livestock populations (9, 10, le), but average 
relationships within breeds recently are becom- 
ing higher because the best sires have many 
descendants (1 8). New reproductive techniques 
and breeding programs likely will produce 
faster increases in inbreeding and more related 
animals. 

Previous algorithms to compute inbreeding 
coefficients were inefficient for very large 
populations. Although required central pro- 
cessing unit (CPU) time (1 l), memory (8). or 
both (4) increase proportionally to the square 
of the number of animals, these requirements 
can be reduced by avoiding calculation of un- 
needed elements (13). Researchers (17, 18) 
have studied inbreeding in large populations 
by tracing two random paths among each 
animal’s ancestors, but this technique estimates 
only mean inbreeding for the population rather 
than individual inbreeding coefficients (17). 
Exact calculation of inbreeding requires tracing 
all ancestors of each animal back to the de- 
fined base population. 

Goals of this research were 1) to produce 
inbreeding coefficients for large populations, 
2) to estimate inbreeding if some pedigree in- 
formation is missing, 3) to extend the concepts 
of relationship and inbreeding to include 
animals of different breeds and heterosis, 4) to 
examine inverses of these relationship matrices 
for use in mixed model equations, and 5 )  to 
discuss adjustment of breeding values for in- 
breeding depression. 

MATERIALS AND METHODS 

Inbreeding 

Inbreeding coefficients for large populations 
can be computed efficiently by constructing 

many small relationship matrices instead of 
one large matrix for the whole population. For 
each animal, a list of its ancestors is formed, 
repetitions of ancestors are excluded, and the 
tabular method (4) is applied to this short list. 
Computing times increase linearly with size of 
population but quadratically with number of 
ancestors. Thus, costs are low unless pedigrees 
extend many generations. Memory required in 
this approach is also small: three vectors to 
store animal and parent identification and one 
square matrix with dimension equal to maxi- 
mum number of ancestors of an individual. 

Less memory is required if pedigrees are 
traced from direct access disk files, such as 
breed association databases. Calculation of in- 
breeding coefficients would then be practical 
for individual animals when registered or for 
potential matings as requested. Times required 
to process many animals would be reduced if 
at least the most popular ancestor lines were 
held in memory. Separate calculation of in- 
breeding for ancestors can be avoided by 
processing youngest animals first and storing 
their ancestors’ inbreeding coefficients as well 
as their own. Processing times might be 
reduced within the tabular method by includ- 
ing only ancestors on paths connecting an 
animal’s sire and dam through any of their 
common ancestors. 

Actual time and memory required by the 
algorithm with all pedigree data in memory 
were tested for the US registered Holstein 
population. The 8,534,077 animals born 1960 
to 1986, the 387,246 animals born before 1960 
that had two or more offspring born after 1960, 
and the 361,304 females born in 1987 were 
included for a total of about 9.3 million 
animals. Identical edits were applied to the US 
registered Ayrshire population and resulted in 
294,3 18 animals included. 

A base population should be defined before 
calculating inbreeding coefficients (1 6). The 
editing procedures used here established an 
approximate 1960 inbreeding base with 1) 
animals born before 1960 treated as unrelated 
and not inbred, 2) the first generation after 
1960 related but not inbred, and 3) second and 
later generations after 1960 increasingly 
related and inbred. With such a base definition, 
inbreeding in the second generation occurs 
only through close matings such as sire- 
daughter and full or half sibs; in more distant 
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generations, more distant mating types also 
contribute. 

Incomplete Pedigrees 

Incomplete pedigrees may cause underesti- 
mation of inbreeding and relationship because 
potential contributions of unknown ancestors 
are ignored. More accurate estimates, espe- 
cially for grade animals, might combine actual 
relationships of known ancestors with assumed 
relationships of unknown ancestors derived 
from mean inbreeding of animals with full 
pedigrees. Inbreeding of animals with one or 
more unknown foreign ancestors also could be 
adjusted upward, except that mean relationship 
and inbreeding levels of foreign and domestic 
ancestors might differ. Domestic ancestors 
might be related more to each other than they 
are to unknown foreign ancestors (1) unless 
genetic exchange across the countries has been 
great. 

Unknown-parent groups are used in animal 
model evaluations to account for changing 
genetic means across time (12, 14, 15). 
Genetic variation also may change across time 
because of selection, mating systems, or in- 
breeding. Variances and covariances of 
unknown parents might be set equal to cor- 
responding parameters for known parents. 
Unknown-parent groups can be inserted in the 
tabular method and in the relationship inverse 
to account for these altered variances. Then 
genetic variance of descendants of these 
unknown parents will be specified automati- 
cally. 

Inbreeding coefficients of unknown parents 
can be assumed to equal mean inbreeding of 
known parents of the same period to account 
for rising inbreeding and relationship levels 
across time. Unknown parents should be as- 
sumed to be related to all other parents by 
twice the mean inbreeding level of the period. 
Mean inbreeding of progeny, which equals half 
the mean relationship of parents, is then the 
same for animals with complete or incomplete 
pedigrees. Different inbreeding and relation- 
ship levels for foreign and domestic unknown 
ancestors could be established, but a better 
solution might be to obtain the foreign 
Wgree files so that the foreign ancestors 
would be known. 

Crossbreeding 

Crossbreeding and inbreeding are to some 
degree opposites (2, 5). Their effects can be 
modeled on the same scale by assuming that 
heterosis is simply the removal of accumulated 
inbreeding depression within each breed. 
Breeds of livestock originated from a common 
ancestral population that existed hundreds of 
years ago. Because breeds usually are closed 
populations, relationships and inbreeding ac- 
cumulate within but not across breeds. The sire 
and dam of a purebred animal usually have a 
common ancestor a few generations back in 
the pedigree, whereas the sire and dam of a 
crossbred animal may share no common ances- 
tors for hundreds of years back. Thus, cross- 
breds are less inbred than purebreds. 

Relationships and inbreeding within and 
across breeds should be extended back to the 
common base population from which the 
breeds of interest arose. If pedigrees also could 
be extended back to when the breeds diverged, 
animals of different pure breeds still would 
share no common ancestors and would be un- 
related, whereas animals of the same breed all 
would share many common ancestors. Thus, 
only crossbreds can have an inbreeding coefi- 
cient of 0, and, by comparison, purebreds are 
all inbred and related within breed. Also, 
crossbreds are more heterozygous than 
purebreds because the crossbred receives a 
mixture of genes from unrelated populations, 
whereas the purebred receives similar genes 
from both parents. 

More distant crosses, such as Bos indicus 
with Bos raunrs, would require even earlier 
base definitions to keep inbreeding coefficients 
positive. Then all B. raunrs animals would 
appear to be related to each other and inbred if 
compared with B. indicus by B. raunrs 
crosses. Coefficients of relationship could be 
extended to even wider crosses and back even 
further to measure similarity of genes across 
the evolutionary scale. These more distant rela- 
tionships might be quantified by analyzing 
DNA instead of searching for common ances- 
tors in ancient pedigrees. 

Relationship matrices should be traced back 
to a single, intermating base population, but 
pedigree recording and herdbook societies 
often started many generations after breeds 
were formed or populations became isolated. 
With a few assumptions regarding average 
relationship and inbreeding of earliest known 
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ancestors, coefficients measured relative to 
separate, recent bases can be adjusted to the 
common, older base. Figure 1 provides an 
example of the assumptions required. Inbreed- 
ing scales within and across breed could be 
aligned by actually measuring homozygosity 
of purebreds and crossbreds. Alternatively, 
scales can be aligned by equating effects of 
inbreeding and heterosis. 

Inbreeding measured within breeds might 
be converted to an across-breed scale as fol- 
lows. Suppose crossbreds exhibit heterosis of 
375 kg of milk and regression on inbreeding 
within pure breeds is -25 kg/l%w, where ?hW 
denotes the percentage of inbreeding measured 
to the within-breed base. The effect of hetero- 
sis is equivalent to the effect of a -15%w 
inbreeding coefficient, which is calculated as 
375 kg/(-25 kg/l%,). To keep coefficients 
positive, an earlier base is chosen, so that 
crossbreds have inbreeding coefficients of 
O%,, where %a denotes the percentage of in- 
breeding across breeds. 

On this across-breed base, a purebred with 
O%, now is credited with inbreeding of 13%,, 
which is calculated as lS%,(lOO%J 
(loo%, + 15%,). Units are larger on the 
across-breed scale because loo%, now 
represents a wider range of heterozygosity 

+ 15%w). Consequently, the regres- 
sion on inbreeding is larger: -28.8 kg/l%,, 
which is calculated as -25 kg/[ l%,,,( loo%&/ 
( l o % ,  + 157bw)]. Also, genetic variance in 
the base population is 15% larger because a 
purebred base population is less genetically 
diverse by comparison. 

The tabular method (4) can be adapted to 
calculate relationships on the across-breed 
base. Breed effects for all breeds present in the 
pedigree should precede the oldest ancestors in 
the list. The corresponding upper left sub- 
matrix of the relationship table then equals the 
breed effect (co)variance matrix divided by 4, 
where 4 denotes additive genetic variance in 
the across-breed base population. Other ele- 
ments of the table are calculated by the usual 
rules: off-diagonal elements are means of par- 
ent elements, and diagonals equal 1 plus half 
of the parents' relationship. Breed effects act 
as parents of the oldest known ancestors. 

Breed and unknown-parent group effects 
represent mean breeding values of particular 

100 lnbreedlng -15 7 50 
withlnbreed -% I I 

100 Inbreeding 13 n 

Loci 70 77 80 90 
homozygous -% I I 

across breeds-% I I I 

100 

Figure 1. Example of corresponding scales to measuze 
inbreeding. 

populations. Variances of breed effects are 
twice the breed's inbreeding coefficient times 4 if breeds differ only because of random 
genetic drift (5). Thus, diagonals of the rela- 
tionship matrix would equal .26 for a breed in 
which the base animals are assumed to have 
13%, inbreeding. Off-diagonals of the relation- 
ship matrix are 0 for breeds that separated at 
the time of the original base population and 
positive for breeds that separated later. A 
general heterosis effect for all breeds might be 
modeled by assuming equal genetic distances 
between the breeds. If breeds are "unrelated" 
and have equal genetic variances, the breed 
covariance matrix is an identity matrix (I) 
times the variance of breed effects, or 14. Let 
vector bi represent the fraction of genes each 
breed contributed to animal i. Elements of bi 
are calculated automatically when breed effects 
are included in the tabular method. Each 
animal's breed composition is the mean of its 
parents' breed compositions, or 
bj = .5@, + bd), where subscripts s and d 
refer to sire and dam. Elements of bj multi- 
plied by ~$4 are the off-diagonal elements of 
the relationship table corresponding to animal i 
and breed effects. The fraction of heterosis 
expressed by animal i is 1 - bsbd. 

Specific heterosis can be modeled by as- 
suming that some breeds are related more 
closely than others. For example, North 
American Holsteins and European Friesians 
must be related to each other more than either 
is to Jerseys. Less heterosis (and a smaller gain 
in heterozygosity) would be expected from 
matings of Friesians with Holsteins than from 
matings of less related breeds. Breed relation- 
ships might be calculated from heterosis esti- 

, 
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mates, from DNA differences, or from esti- 
mated time of separation. Relationships among 
breeds then are transferred to descendants by 
the tabular method and combined with rela- 
tionships caused by common ancestors in the 
pedigree to calculate similarity of each 
animal’s genes, regardless of breed. 

Use of an across-breed base for inbreeding 
coefficients simplifies genetic evaluation 
models. General heterosis, specific heterosis, 
and inbreeding depression might all be ac- 
counted for with just one regression coeffi- 
cient. Such a regression accounts for lower 
mean performance of animals with fewer 
heterozygous loci, either because parents were 
of the same breed or were related within breed. 
Higher Mendelian sampling variances in 
progeny of crossbred than of purebred parents 
and lower Mendelian sampling variances in 
progeny of inbred parents also are accounted 
for if such inbreeding coefficients are used in 
constructing inverses of variance matrices. 

Inverse Relationship Matrices 

Additive genetic covariance matrices have 
sparse inverses that are easy to construct if the 
known ancestors that cause ties among descen- 
dants are included and if inbreeding arises only 
from known ancestors (7). If unknown ances- 
tors are related and inbred, inverses of relation- 
ship matrices may not have simple structure 
unless effects of genes common to the 
unknown ancestors are included. Assumptions 
about unknown ancestors determine the rela- 
tionships among known animals through the 
recursive formulas of the tabular method. 
Some of these assumptions may lead to more 
accurate relationships or to simpler inverses 
than others. 

An identity matrix is the simplest assump- 
tion regarding relationship of unknown par- 
ents, but this assumes that none is inbred and 
each is unrelated to the animal’s other known 
and unknown ancestors. This may be true for 
early unknown ancestors, but more recent 
unknown parents may be inbred and related to 
others. Inbreeding and relationship of unknown 
parents may be set equal to mean inbreeding 
and relationship of known parents of cor- 
responding periods. Fewer parameters are re- 
quired when relationships of unknown parents 
are functions of their estimated inbreeding 
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coefficients. Relationships might be estimated 
as twice the inbreeding coefficient of the older 
unknown parent, twice the inbreeding of the 
younger, or twice the harmonic mean of the 
two. Estimating inbreeding as twice the in- 
breeding coefficient of the older unknown par- 
ent provided the most reasonable estimates and 
was used in the Ayrshire analysis. Inverses are 
constructed by linking progeny to their parents 
and by linking progeny of unknown parents to 
unknown-parent group effects as in work by 
Westell et al. (14). Inclusion of these 
unknown-parent group or breed effects results 
in sparser inverses because a descendant effect 
is linked to just one group effect instead of all 
animals possessing these same genes. Group 
effects now are treated as random instead of 
fixed, because variances of group effects are 
assumed to be known. Thus, a final step is to 
add the inverse of the group (co)variance 
matrix divided by 4 to the group by group 
portion of the relationship inverse. 

An animal’s additive genetic merit is the 
mean of its parents’ merits plus a residual, 
regardless of whether parents are not inbred or 
are inbred, purebred, or crossbred. The residual 
is Mendelian sampling (m) and has mean 0 
and variance that depends on heterozygosity of 
parents through the formula Var(m) = (.5 - 

.25Fs - .25Fd)4, where F, and Fd are in- 
breeding coefficients of sire and dam, whether 
known or unknown. If group effects replace 
unknown parents, the unknown parent’s devia- 
tion from group adds to the residual an effect 
with variance .25(1 - ~ ~ > 4  or .25(1 - Fd)o:. 
Thus, each animal contributes the following 
coefficients to the inverse: 

animal sire dam r 1  -.5 -.5 1 
.25 .25 

where us (Ud) takes values of 0 if sire (dam) is 
known and 1 if sire (dam) is unknown. 

When sire or dam are unknown, coefficients 
are assigned to corresponding breed or group 
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effects. These coefficients are identical to 
those derived by Westell et al. (14) when F, 
and Fd are 0. Resulting equations differ from 
those of Westell et al. (14) because coefficients 
are now adjusted for inbreeding, multiple 
breeds and breed crosses can be included, and 
genetic groups are considered to be random 
rather than fixed. 

Breed and unknown-parent group effects 
are assumed to result only from random 
genetic drift. If selection has caused larger 
differences, fixed groups can be reimposed by 
avoiding addition of the group (co)variance 
inverse. Also, an unknown sire’s (dam’s) devi- 
ation from group might have reduced variance, 
e.g., r(l - F s g ,  where r is the fraction of 
genetic variance remaining after selection. The 
appropriate denominator for the 3 x 3 coeffi- 
cient matrix is then (1 + usr) (1 - F,) + 
(1 + Udr) (1 - Fd). 

Animal Rankings 

With inbreeding depression and populations 
containing harmful recessives, the value of an 
animal’s genes depends on how frequently 
those same genes appear in the population of 
mates. Predicted transmitting abilities can be 
adjusted for the mean inbreeding that occurs if 
the animal is mated randomly to the current 
population; however, mean relationship to the 
population may be expensive and difficult to 
compute without faster algorithms. Rankings 
derived from randomized progeny tests with 
no adjustment for inbreeding may be suffi- 
cient. Alternatively, transmitting abilities may 
be corrected to zero inbreeding by inclusion of 
a regression on inbreeding. Users can then 
adjust such rankings for the inbreeding caused 
in the mating, herd, or population of interest. 

Breeds and animals that are less related to 
the average current animal should be credited 
for contributing less inbreeding (more hetero- 
sis) if mated at random to the current popula- 
tion. Holsteins would contribute little heterosis 
because most potential mates are Holsteins. 
Other breeds would be rewarded much more 
for heterosis, but this assumes their genes actu- 
ally would be combined with Holstein genes. 
If this assumption is inaccurate, transmitting 
abilities could be corrected to O%, inbreeding, 
and breeders could adjust downward for 
purebred and other matings not capturing the 
full benefits of heterosis. 

2.00 

5 1.50 

57 60 62 67 72 77 82 85 

Birth Year 

Figure 2. Holstein inbreeding by biah year. 

Crossbred populations have not only higher 
means than the means of parents but also more 
genetic variation than exists within the parent 
breeds. Selection within pure breeds has been 
effective, but selection response should be 
greater within crossbred populations contain- 
ing new combinations of unrelated genes. 
Genetic evaluations incorporating these as- 
sumptions should rank animals more ac- 
curately and should serve to remind breeders 
of basic genetic principles. 

RESULTS 

Calculation of inbreeding coefficients for 
9.3 million Holsteins required only 3.4 CPU 
hours on an IBM 3090 (IBM Corp., h o n k ,  
NY) and required 260 MB of memory. Maxi- 
mum number of ancestors in an individual 
pedigree was 197. Mean inbreeding levels 
(Figure 2) were O%, in 1960, .4%, in 1970, 
l.O%, in 1980, and 2.0%, in 1987. Recent 
estimates of Young et al. (18) to a much older 
base did not indicate this trend. Hudson and 
Van Vleck (9) reported an increase of only 
.3%, from 1960 to 1979 for Holsteins in the 
northeastern US, but they included grades with 
less complete pedigrees and used approximate 
methods. Miglior et al. (10) reported a trend of 
less than .5%, from 1980 to 1987 for Cana- 
dian Holsteins, but pedigrees were incomplete, 
and a base year was not mentioned. 

Among cows born in 1987, 84.7% had in- 
breeding coefficients greater than O%,. Other 
studies reported much smaller percentages; 
44% of cows born in 1979 were reported posi- 
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tive by Hudson and Van Vleck (9), and only 
15% of cows born in 1987 were reported posi- 
tive by Miglior et al. (10). The maximum 
inbreeding coefficient of any animal was 
32.8%,. Holstein results did not include 
unknown-parent groups to adjust for inbreed- 
ing from unknown parents, most of which 
were likely Canadian. 

Ayrshire inbreeding coefficients calculated 
with and without unknown-parent grouping are 
in Table 1. Unknown parents initially were 
assigned inbreeding and relationship coeffi- 
cients of 0. In subsequent rounds, values were 
assigned based on mean inbreeding from the 
previous round for animals of that year group. 
Mean inbreeding of cows born in 1987 rose 
from 3.7%, initially to 4.2%,; unknown par- 
ents were considered to be inbred and related. 
Rapid convergence occurred in this example 
because most pedigrees were complete. 

Figure 3 provides an example of a Jersey 
(J)-Holstein (H) relationship matrix including 
breed effects (JO, HO), purebred animals (Jl, 
J2, H1, H2), and a crossbred animal (J1 x H2). 
On the more recent within-breed bases, the 
purebreds were not inbred and were unrelated 
to each other. If measured on the across-breed 
base, the two Jerseys (Jl, 52) were related to 
each other but not to the Holsteins (Hl, H2). 
Only the crossbred was not inbred on the 
across-breed base. Inbreeding and relationship 
coefficients in Figure 3 were adjusted to the 
older, across-breed base by assigning .26 for 
variance of breed effects and by using rules of 
the tabular method to complete the relationship 
matrix. 

Figure 4 provides the inverse of the rela- 
tionship mamx in Figure 3. The inverse ap- 
pears to be sparse and simple to construct. For 
example, the crossbred animal (J1 x H2) con- 
tributed coefficients 

J1 H2 J1 x H2 

.57 -1.15 . 

.57 -1.15 1 -1.15 -1.15 2.30 

Its purebred parent J1 contributed coefficients 

JO JO J1 
.29 .29 -.57 
.29 .29 -257 

-.57 -.57 1.15 

Four of these coefficients sum to 1.15 on the 
diagonal for JO. Two other off-diagonal pairs 
sum to -1.15. Finally, the inverse of the breed 
(co)variance matrix contributes coefficients 

JO HO 

3.85 

Table 2 provides an example of breeding 
values adjusted to inbreeding of 0% or to mean 

TABLE 1. Mean inbreeding coefficients for Ayrshires with and without unknown-parent grouping. 

Mean inbreeding coefficient 
~ 

Second 
Percentage of Fmt iteration iteration 

Birth unknown Traditional unknown-parent unknown- 
Years parents calculation groups1 parent groups2 

1955 to 1959 Io0 0 0 0 
1960 to 1964 30 .1 .1 .1 
1965 to 1969 11 .5 .6 .6 
1970 to 1974 4 1.2 1.3 1.4 
1975 to 1979 2 2.4 2.6 2.7 
1980 to 1984 2 3.2 3.5 3.5 
1985 to 1986 1 3.3 3.8 3.9 
1987 0 3.7 4.2 4.2 

~~~~~ ~ ~ 

lS&s inbreeding of unknown parents equal to mean of traditionally calculated inbreeding coefficients in the same 

2Sets inbreeding of unknown parents equal to first iteration means. 
Yew &roup. 
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Ho 26 0 0 2 6 2 6 . 1 3  

J l  1.13 .26 0 0 .565 

J2 1.13 0 0 .13 

H1 1.13 9 6  . I3 

H2 symmetric 1.13 .565 

- 
- 
- 
- 
- 
J1 x H2 1 .oo 

JO 

Ho 

J1 

J2 

ni 
H2 

- 
- 
- 
- 

inbreeding expected from randomly mating 
each animal to the current population. Adjust- 
ment to 0% simply requires a regression on 
inbreeding in the model; adjustment to mean 
inbreeding then requires addition of the regres- 
sion coefficient times the animal's mean in- 
breeding. Holsteins were assumed to be 90% 
of the population and thus caused more mean 
inbreeding. Holsteins had higher breeding 
values than Jerseys, but this advantage 
decreased somewhat when Holsteins were 
penalized for having higher mean relationships 
with the current dairy cattle population. 

JO HO J1 JZ H1 

6.15 0 -1.15 -1.15 0 

6.15 0 0 -1.15 

1.72 0 0 

1.15 0 

1.15 - 
symmetric 

CONCLUSIONS 

Inbreeding coefficients for a population of 
nearly 10 million animals with many of the 
pedigrees traced back five or more generations 
were computed in 3.4 h with a simple, new 

-1.15 

0 0  

1.72 -1.15 

JlxH2 2.30 

Figure 4. Inverse of example relationships between 
two Jerseys (J1 and J2), two Holsteins (H1 and H2), and a 
Jersey-Holstein crossbred (J1 x H2); breed effects are 
indicated by JO and HO. 

TABLE 2. Hypothetical breeding values for protein yield 
for two Jerseys ( J l ,  J2), two Holsteins (Hl, H2), and a 
crossbred (J1 x H2) adjusted to inbreeding 0 of 0% or 
to mean F across breeds. 

~ 

Breeding value 
adjusted' to 

Animal Mean F 0% F F 
Mean 

- 

J1 1 -22 -23 
J2 1 -63 -64 
HI 15 -5 -20 
H2 13 +34 +2 1 
J1 x H2 7 +6 -1 
~~~~~ ~ 

'Regression on inbreeding assumed to be 1 kg of 
protein yield per 1% of F. 

algorithm. Computing a small relationship 
matrix for each animal and its ancestors is 
more efficient than calculating one large 
matrix for the whole population. Average in- 
breeding of US Holsteins born in 1987 was 
2.0% relative to a 1960 base. Inbreeding and 
relationship of animals with incomplete 
pedigrees can be estimated using an unknown- 
parent grouping strategy. Animals with genes 
most similar to those of the population or mate 
of interest should be penalized for the expected 
inbreeding depression. 

Procedures to evaluate all breeds and cross- 
breds together are simplified by measuring 
relationships and inbreeding back to an ances- 
tral population that existed before breeds sepa- 
rated. Inbreeding depression and heterosis ef- 
fects then are united on the same scale; 
animals of the same breed are assumed to 
share common genes, and crossbreds are as- 
sumed to be more heterozygous than 
purebreds. If unknown ancestors are consi- 
dered to be related and inbred, effects of their 
common genes can be included as separate 
effects in the relationship matrix to make its 
inverse simpler to construct and more sparse. 
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